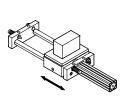
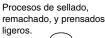
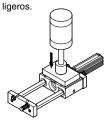

Mesa guiada "Serie pesada" ø12, ø16, ø20, ø25, ø32, ø40

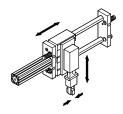
Mesa lineal de gran rigidez y precisión.

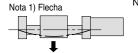

■ Dos modelos de guías para adaptarse a las diferentes aplicaciones.

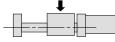



■ Tope elástico de regulación de carrera.

Realiza la función de una amortiguación y ajusta la carrera 5mm en cada lado, o 10mm en ambos lados.


Transferización





	Masa móvil	CXTM (Casqui	llos de fricción)	CXTL (Rodamientos lineales a bolas)			
Serie	máx. (kg)	Flecha máx.(mm)	Carga estática admisible (kg)	Flecha máx.(mm)	Carga estática admisible (kg)		
CXT□12	3	0.002	350	0.015	60		
CXT□16	7	0.004	500	0.019	70		
CXT□20	12	0.007	900	0.044	125		
CXT□25	20	0.030	900	0.180	125		
CXT□32	30	0.032	1100	0.123	140		
CXT□40	50	0.025	1900	0.109	170		

Nota 2) Carga estática admisible

Nota 1) La "Flecha" equivale a cantidad de flexión del vástago guía que se produce cuando una carga máx. es colocada en la mesa de carrera máx, mientras que la mesa esté en el centro de la carrera (el grado de holgura no está incluida).

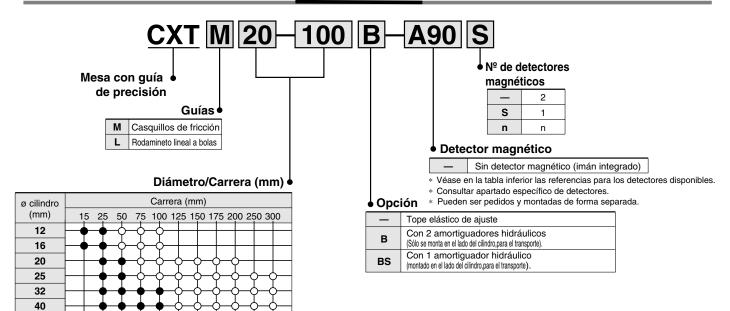
Nota 2) La carga estática admisible equivale a la cantidad admisible de peso estacionario que puede ser aplicado verticalmente a la pieza de trabajo de la superficie de montaje mientras que la mesa esté al

final de carrera.

■Versiones

Gu	ıías	Diámetro	Carrera (mm)														
Cojinetes de bronce	Rodamientos lineales de bolas	(mm)	1	15	2	5	50	7	5 1	00	12	5 1	50 1	75 2	00 2	50 30	00
CXTM12	CXTL12	12	H	-	4	-	÷	~	}_	 	+						
CXTM16	CXTL16	16	H	-	4	-	 	_	}_	 	\dashv						
CXTM20	CXTL20	20			4	-	•	_	}_	 	- -	—	 }⊸	 (}_ }		
CXTM25	CXTL25	25		ŀ	4	-	•	_	}_	 	- -	—	 }⊸	<u></u>	<u></u>	 }⊸(-
CXTM32	CXTL32	32		<u> </u>	4	-	•	—	-	+	- -	—	 	<u></u>	<u></u>	 }⊸(-
CXTM40	CXTL40	40			4	-	•	-	-	<u></u>	<u>-</u>	—	<u> </u>	<u> </u>	<u> </u>	 	 _

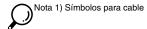
●·····Carrera estándar ○ ·····Carrera larga



Mesa con guía de precisión "Heavy duty"

Serie CXT

ø12, ø16, ø20, ø25, ø32, ø40


Forma de pedido

 ^{.....}Carrera estándar O....Carrera larga
 * Véase en la pág. 2-140 las carreras mínimas para los modelos equipados con detectores magnéticos.

Detectores magnéticos aplicables

				0.11		Voltaje		Montaje	directo	Montaje	con raíl	Lon	gitud c	able (1) (m)			
Modelo	Función especial	Entrada del cable	Indicador	Cableado (Salida)		C	AC	ø12 a	a ø40	ø32,	ø40	0.5	3	5	_	С	arga	
		aci cabic		, ,	L	JC .	AC	Perpendicular	En línea	Perpendicular	En línea	(—)	(L)	(Z)	(N)			
				3 hilos (Equivalente a NPN)	_	5V	_	A96V	A96	_	A76H	•	•	_	_	CI	_	
-		Salida	Sí		_	_	200V	_	_	A72	A72H	•	•	_	_			
Detector Reed		directa	51	2 hilos		40)/	1001/	_	_	A73	A73H	•	•	•	_	_		
Ë	_	del cable				12V	100V	A93V	A93	_	_	•	•	_	_		Relé	
Ç		cable	No		24V	5V, 12V	100V	A90V	A90	A80	A80H	•	•	_	_	CI	PLC	
ete		Conector	Sí		24V	12V	_	_	_	A73C	_	•	•	•	•	_		
		Corrector	No			5V, 12V	24V	_	_	A80C	_	•	•	•	•	CI		
	Indicador diagnóstico (2 LED)	Salida dir. cable	Sí			_	_	_	_	A79W	_	•	•	_	_	_		
				3 hilos (NPN)		5V, 12V		_	_	F7NV	F79	•	•	0	_	CI		
				3 IIIOS (INPIN)		12V		M9NV	M9N	_	_	•	•	_	_	_		
		Salida directa		3 hilos (PNP)		5V, 12V		_	_	F7PV	F7P	•	•	0	_	CI		
	_	del		3 fillos (PNP)				M9PV	M9P	_	_	•	•	_	_			
<u> </u>		cable				12V		_	_	F7BV	J79	•	•	0	_			
Detector estado sólido				2 hilos			12V	12V		M9BV	M9B	_	_	•	•	_	_	_
용		Conector									_	J79C	_	•	•	•	•	
sta			0,	O Hile - (NIDNI)				M9NWV	M9NW	F7NWV	_	•	•	0	_		Relé	
ě	Indicador		Sí	3 hilos (NPN)	24V	E) (40) (_	_	_	_	F79W	•	•	0	_	-	PLC	
양	diagnóstico			O Hiles (DND)		5V, 12V		_	_	_	F7PW	•	•	0	_	CI		
ete	(2 LED)	0.51		3 hilos (PNP)				M9PWV	M9PW	_	_	•	•	0	_]	
Ď		Salida directa		2 hilos	12V		M9BWV	M9BW	F7BWV	J79W	•	•	0	_	_			
	Resistente al agua (2 LED)	del					_	М9ВА	_	F7BA	_	•	0	_				
	Con temporizador	cable		3 hilos (NPN)		=> / / 6> /		_	_	_	F7NT	_	•	0	_]	
	Con salida diagnóstico (2 LED)					5V, 12V		_	_	_	F79F	•	•	0	_	CI		
	Indicación diagnóstico con salida mantenida (2 LED)			4 hilos (NPN)		_		_	_	_	F7LF	•	•	0	_	_]	

Ej.) A80C A80CL A80CZ

A80CN

Nota 2) Los detectores de estado sólido marcados con un "O" se fabrica bajo demanda.
Nota 3) Para trabajar con un relé como la carga en los modelos D-F7BV, J79(C)(W), M9B(V), F7NWV, F79W, M98W(V), F7BWV, F7BA, F7LF, o M9BA, use 24V DC porque la operación podría ser inestable debido a una caída de voltaje interno si se usa 12V DC.

Mesa con guía de precisión *Serie CXT*

Características técnicas

Fluido	Aire comprimido
Funcionamiento	Doble efecto
Presión de trabajo	1.5MPa
Presión de trabajo máx.	0.7MPa ⁽¹⁾
Presión de trabajo mín.	0.15MPa
Temperatura ambiente y de fluido	-10 hasta 60° C (sin congelación)
Velocidad de trabajo	50 hasta 500mm/s
Amortiguación	Elástica (ambos extremos/estándar), amortigauador hidráulico (opción)
Lubricación	No necesaria
Rango de ajuste de carrera	-10mm (5 a cada extremo)

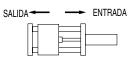
Rango de ajuste ampliado

La versión -x138 nos permite un rango de ajuste de carrera más amplio. (ver valores de la tabla siguiente).

	CXT□12, 16	CXT□20, 25	CXT□32	CXT□40
Rango carrera	–26mm	–28mm	–44mm	–42mm
ajustable	(Un lado -13mm)	(Un lado -14mm)	(Un lado –22mm)	(Un lado –21mm)

Características amortiguador hidráulico

Modelo		CXT□ 12 16	CXT□20	CXT□25	CXT□ 32 40				
Amortiguador hidráulico		RB0806	RB1007	RB1411	RB2015				
Energía absorbida máx. (J)		2.94	5.88	14.7	58.8				
Recorrido amo	rtiguación (mm)	6	7	11	15				
Velocidad de in	npacto	0.05 a 5m/s							
Frecuencia de traba	jo máx. * (cyc/min)	80	25						
Temperatura	ambiente	–10 a 80° C							
Fuerza muelle	Fuerza muelle Extendido		4.22	6.86	8.34				
(N) Contraído		4.22	6.86	15.30	20.50				
Peso (g)	Peso (g)		25	65	150				



^{*} El valor mostrado es válido cuando la energía de absorción por ciclo está en su máximo nivel. De la misma manera, la frecuencia de trabajo puede ser incrementada de acuerdo con la energía de absorción

Fuerza teórica

					(N)			
Diámetro cilindro	Sentido	Area efectiva	Presión de trabajo (MPa)					
(mm)	movimiento	(mm²)	0.3	0.5	0.7			
12	ENTRADA	84.8	25	42	59			
12	SALIDA	113	34	57	79			
16	ENTRADA	151	45	75	106			
10	SALIDA	201	60	101	141			
20	ENTRADA	236	71	118	165			
20	SALIDA	314	94	157	220			
25	ENTRADA	378	113	189	264			
25	SALIDA	491	147	245	344			
32	ENTRADA	603	181	302	422			
32	SALIDA	804	241	402	563			
40	ENTRADA	1056	317	528	739			
40	SALIDA	1257	377	628	880			

Tabla de pesos

CXTM (Casq	CXTM (Casquillos de fricción) (kg)											
© ciilindro (mm)	15	25	50	75	100	125	150	175	200	250	300	
12	0.85 (0.35)	0.90 (0.35)	1.02 (0.35)	1.13 (0.36)	1.25 (0.37)	_	_	_	_	_	_	
16	1.18 (0.50)	1.24 (0.50)	1.39 (0.51)	1.54 (0.52)	1.68 (0.53)	_	_	_	_	_	_	
20	_	2.35 (0.85)	2.61 (0.87)	2.89 (0.88)	3.15 (0.90)	3.41 (0.91)	3.66 (0.93)	3.92 (0.94)	4.18 (0.96)	_	_	
25	_	2.76 (1.09)	3.03 (1.11)	3.34 (1.14)	3.62 (1.16)	3.89 (1.18)	4.16 (1.21)	4.43 (1.23)	4.70 (1.25)	5.25 (1.30)	5.79 (1.34)	
32	_	4.62 (2.06)	4.98 (2.10)	5.34 (2.14)	5.70 (2.17)	6.00 (2.21)	6.35 (2.25)	6.69 (2.29)	7.04 (2.33)	7.73 (2.41)	8.43 (2.49)	
40	_	8.30 (3.71)	8.82 (3.75)	9.32 (3.79)	9.83 (3.83)	10.40 (3.87)	10.91 (3.91)	11.43 (3.95)	11.95 (3.99)	12.98 (4.07)	14.02 (4.15)	

CXIL (Rodal	CXTL (Rodamiento lineal a bolas) (kg)										
© cilindro (mm)	15	25	50	75	100	125	150	175	200	250	300
12	0.75 (0.41)	0.78 (0.42)	0.85 (0.42)	0.92 (0.42)	0.98 (0.43)	_	_	_	1	_	_
16	1.05 (0.57)	1.08 (0.57)	1.18 (0.58)	1.27 (0.59)	1.35 (0.60)	_	_	_		_	_
20	_	2.00 (1.02)	2.15 (1.04)	2.32 (1.05)	2.46 (1.07)	2.60 (1.08)	2.75 (1.10)	2.89 (1.11)	3.03 (1.13)	_	_
25	ı	2.41 (1.25)	2.57 (1.28)	2.77 (1.30)	2.92 (1.33)	3.08 (1.35)	3.24 (1.37)	3.40 (1.39)	3.56 (1.42)	3.78 (1.46)	4.19 (1.50)
32	1	4.23 (2.26)	4.47 (2.30)	4.71 (2.34)	4.95 (2.38)	5.13 (2.42)	5.36 (2.46)	5.59 (2.50)	5.82 (2.54)	6.27 (2.62)	6.73 (2.70)
40	_	7.55 (4.31)	7.86 (4.35)	8.16 (4.39)	8.46 (4.43)	8.82 (4.47)	9.13 (4.51)	9.44 (4.55)	9.75 (4.59)	10.37 (4.67)	10.99 (4.74)

Nota 1) Los datos en paréntesis corresponden al peso de las partes móviles (pesos de las partes móviles del cilindro incluidas.) Nota 2) El peso indicado arriba no incluye un amortiguador hidráulico.

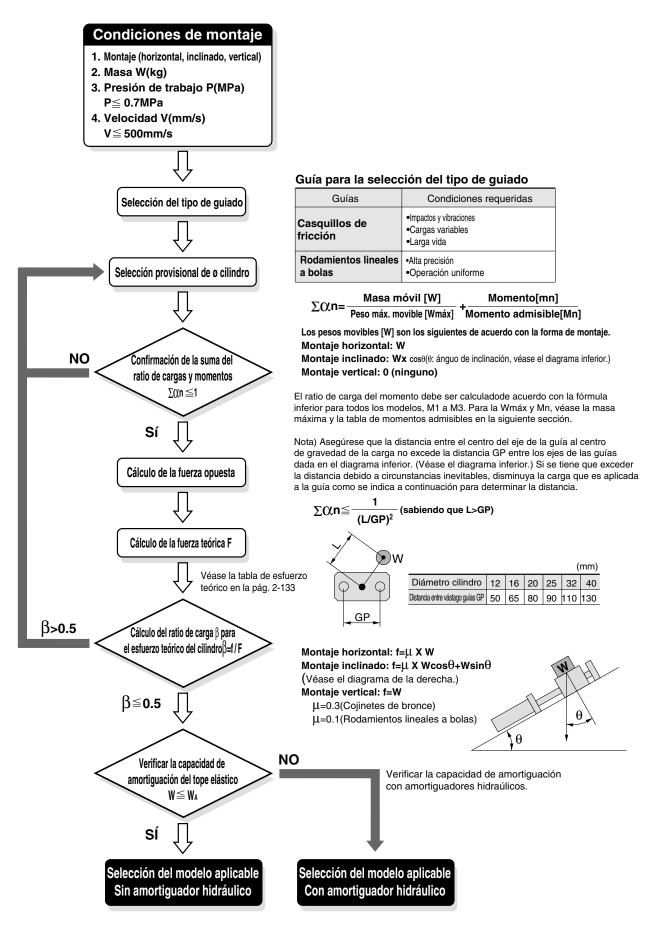
Precacuciones de uso

Funcionamiento

- 1 Asegúrese de no aplicar al carro exterior una carga que exceda el valor que ha sido calculado en los procedimientos de selección. Trabaje con el cilindro asegurándolo por las placas y no por el carro exterior.
 - El espacio entre el carro exterior y la placa al final de carrera es aproximadamente de1mm a 6mm. Podría ser extremadamente peligroso porque existe el riesgo de que se queden atrapados los dedos. Instale una cubierta si fuese necesario.
- (4) Ajuste el tornillo de ajuste hasta que toque el carro. Si se trabaja sin estar en contacto, el vástago del cilindro o el adaptador de conexión podría llegar a causar un impacto excesivo, o bien el carro podría colisionar con la placa y crear un ruido extraño.
- La carga o la velocidad de trabajo será delimitada si sólo se usa el tornillo de ajuste. Véase "La carga admisible cuando se use sólo el tornillo de ajuste" en la pág. 2-135
- 6 Contacte con SMC si este producto se usara en unas condiciones tales que el vástago y las superficies del eje de la guía estén expuestos al agua (agua caliente), liquido refrigerante, virutas o polvo.
- ② Las guías del carro exterior deben ser engrasadas periódicamente. Ponga grasa (Clase 1 o 2 litio) a través de la boquilla de engrase. Nota) En aquellos con un diámetro de ø12, aplique al eje de la guía.
- 8 Para trabajar con el cilindro, suministre aire comprimido sin lubricar. Para lubricarlo, use aceite de turbina clase 1 (ISOVG32). (No use nunca aceite de máquina.)

Instalación

- ① Cuando se desee un nivel alto de planitud para la superficie en la que se va a montar el cilindro, si no se puede obtener una planitud suficiente, use suplementos para ajustar la instalación del cilindro para que se pueda trabajar con el carro exterior a lo largo de la carrera bajo la presión de trabajo mínima.
- ② No raye o haga ninguna muesca al vástago del cilindro porque ésto podría dañar la junta del vástago y podría producir fugas. Lo mismo se aplica para el eje de la guía.
- Asegúrese de no imprimir golpes bruscos o momentos excesivos al carro del modelo con rodamiento de bolas.
- 4 La dirección de la conexión del cilindro se puede cambiar en incrementos de 90 extrayendo los 4 tornillos que sujetan al ciilindro. Después de cambiar la dirección, verifique su funcionamiento a una presión de trabajo mínima.
- 5 Antes de la instalación, límpie cuidadosamente las tuberías de conexión para evitar que el polvo y virutas entren en el cilindro.
- La posición de montaje del tornillo de regulación y el amortiguador hidráulico no puede ser invertido debido a las restricciones impuestas por el eje colocado para el amortiguador hidráulico incluido en el carro exterior. Para invertir la posición, contacte con SMC.

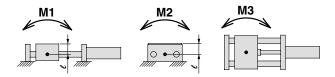

Uso del amortiguador hidráulico

- 1) Los amortiguadores hidráulicos de la serie RB (de SMC) pueden absorber un amplio rango de energía sin requerir ningún ajuste (no dispone de tornillo de ajuste.)
- El tornillo en la parte inferior no sirve para ajustar. No gire nunca este tornillo porque ésto originaría fugas.
- No raye la superficie del amortiguador hidráulico porque podría afectar a la durabilidad de éste o podría originar un mal funcionamiento en la contracción.

Forma de selección de modelos

Selección del modelo

Precisión antigiro del carro



Dirección M3

Diámetro (mm)		TM de fricción)	CXTL (Rodamientos lineales a bolas)			
(11111)	$\theta p(=\theta y)$	$\theta p(=\theta y)$ θr		θr		
12	±0.09	±0.12	±0.05	±0.05		
16	±0.08	±0.10	±0.05	±0.04		
20	±0.07	±0.08	±0.04	±0.03		
25	±0.07	±0.07	±0.04	±0.03		
32	±0.08	±0.07	±0.04	±0.03		
40	±0.06	±0.06	±0.03	±0.03		

Tabla de cargas y momentos máximos admisibles

Diámetro	Guías	Carga máx.	Momento admisible (N·m)			
(mm)	Guids	Wmáx (kg)	M1(=M3)	M2		
12	Casquillos de fricción	0	1.25	1.68		
12	Rodamientos de bolas	3	0.53	0.70		
16	Casquillos de fricción	7	3.34	4.25		
10	Rodamientos de bolas	/	1.53	2.11		
20	Casquillos de fricción	12	11.4	17.1		
20	Rodamientos de bolas	12	5.60	7.28		
25	Casquillos de fricción	00	11.4	19.3		
20	Rodamientos de bolas	20	5.60	8.19		
32	Casquillos de fricción	20	19.8	23.3		
32	Rodamientos de bolas	30	10.1	14.8		
40	Casquillos de fricción	FO	37.3	46.2		
40	Rodamientos de bolas	50	21.3	27.5		

Nota) Para calcular el momento, la longitud del brazo equivale a la distancia desde el centro del eje de la guía (marca "•") La dimensión ℓ del centro del eje de la guía a la superficie superior

						(mm)	
ø cilindro	12	16	20	25	32	40	

28

31

39.5

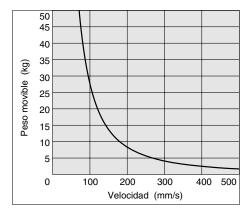
47.5

24

de la tabla está indicada en la parte inferior.

19.5

Energía cinética admisible con los topes elásticos

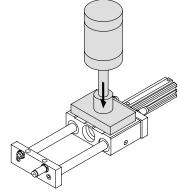

Si solamente es usado el tornillo de ajuste para parar la carga, asegúrese que la carga y la velocidad sea más baja que la curva en el gráfico de la derecha, tomando en consideración la durabilidad de la amortiguación elástica que está incluida al final del tornillo de ajuste y la vibración y el ruido que se crea cuando

En condiciones tales en las que la masa y la velocidad esté por encima de la curva, use un amortiguador hidráulico (asegurándose que no se exceda la carga máxima).

Precaución

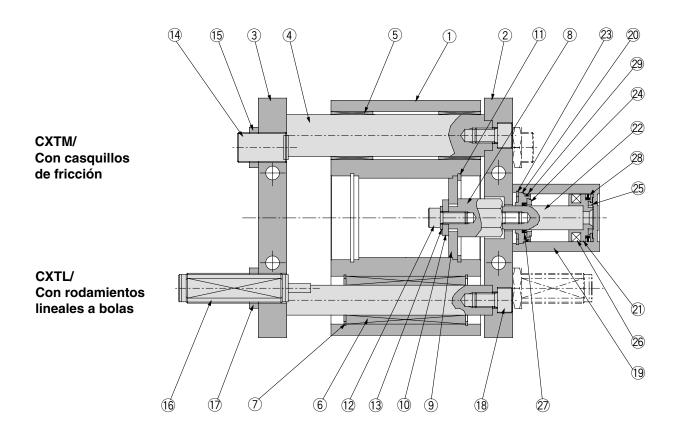
En el caso del modelo con rodamientos lineales a bolas, la vida de la mesa podría reducirse drasticamente si se aplican movimientos bruscos o momentos excesivos. Por este motivo, si incluso las condiciones dadas no se excedieran, se recomienda el uso de un amortiguador hidráulico.

Dimensión ℓ


Cargas admisibles en los finales de carrera

Cuando la mesa de la serie CXT es usada para movimientos del elemento de trabajo, tales como en procesos de sellado o puesta a presión, será plicada una carga vertical a la superficie superior del carro estando éste parado (véase el diagrama de la derecha). En este caso, el peso admisible será mayor que el peso de la carga máxima como en el mostrado en la tabla a la derecha.

Precaución


- Asegúrese que el carro exterior se pare al final de carrera.
- 22 Marque el centro del peso para ser aplicado en el centro del carro exterior. La dirección de la caga debe estar colocada verticalmente en relación a al superficie en la que se monta el elemento de trabajo,como se muestra en el diagrama de la derecha.
- 3No aplique una carga que pueda provocar movimientos bruscos tales como los producidos por el movimiento péndulo (en particular con el modelo de rodamientos de bolas).
- Si este peso es aplicado, la flexión del eje de la guía también tendrá 2-136 un valor mayor.

Peso estát	ico admisil	ble _(kg)
ø cilindro (mm)	CXTM (Cojinete de bronce)	CXTL (Rodamiento lineal de bolas)
12	350	60
16	500	70
20	900	125
25	900	125
32	1100	140
40	1900	170

Construcción

Lista de componentes

Nº	Designación	N	laterial	Obervaciones
1	Carro exterior	Aleación	aluminio	Anodizado duro
2	Placa A	Aleaciór	aluminio	Anodizado duro
3	Placa B	Aleaciór	n aluminio	Anodizado duro
			Acero al carbono	Cromado duro
(4)	Vástago guía	CXTL	Acero guía	Templado alta frecuencia, cromado duro
<u></u>	Cojinetes de bronce	Aleación guía	a, acero al carbono	
6	Rodamientos lineales a bolas			
7	Anillo fijación tipo C	Acero tr	atado	Niquelado
8	Adaptador	Acero al	carbono	Niquelado
9	Acoplamiento	Acero al	carbono	Niquelado
10	Arandela	Acero al	carbono	Zinc cromado
11)	Anillo fijación tipo C	Acero tr	atado	Niquelado
12	Tornillo allen	Acero al c	romo molibdeno	Niquelado
13	Arandela elástica	Lámina	de acero	Niquelado
14)	Tope elástico	Acero al ca	rbono, Elastomero	Niquelado
15)	Tuerca	Acero al	carbono	Niquelado

Lista de componentes

Nº	Designación	Material	Observacio	nes
16	Amortiguador hidráulico		Opcional	
17)	Tuerca	Acero al carbono	Accesorio amortiguado	or hidráulico
18	Tornillo Allen	Acero al cromo molibdeno	Niquelado	
19	Tubo del cilindro	Aleación de aluminio	Anodizado dur	0
20	Culata	Aleación de aluminio	Anodizado blai	nco
21)	Embolo	Aleación de aluminio	Cromado	
22	Wéstana mués	Acero inoxidable		ø12 a 25
4	Vástago guía	Acero al carbono	Cromado duro	ø32, 40
23	Anillo fijación tipo C	Acero tratado	Revestido en zinc	de fosfato
24)	Anillo elástico A	Poliuretano		
25	Anillo elástico B	Poliuretano		
26	Imán			
27)	Junta del vástago	NBR		
28	Junta del émbolo	NBR		
29	Junta estanqueidad camisa	NBR		

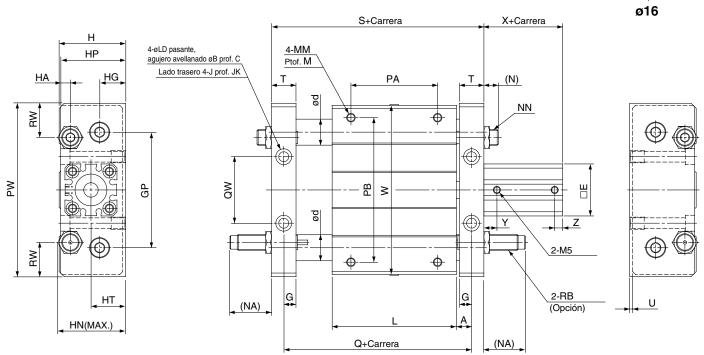
Juego de juntas de recambio (Una junta del vástago 🕖, una junta del émbolo 🖓 y una junta estanqueidad de la camisa 🖗 están incluidas en el juego.

			Refe	rencia		
Modelo	CXT□12	CXT□16	CXT□20	CXT□25	CXT□32	CXT□40
Cilindro Carrera	CDQSB12	CDQSB16	CDQSB20	CDQSB25	CDQ2A32	CDQ2A40
Carrera estándar	CQSB12-PS	CQSB16-PS	CQSB20-PS	CQSB25-PS	CQ2B32-PS	CQ2B40-PS
Carrera larga (1)	CQSB12-L-PS	CQSB16-L-PS	CQSB20-L-PS	CQSB25-L-PS	CQ2A32-L-PS	CQ2A40-L-PS

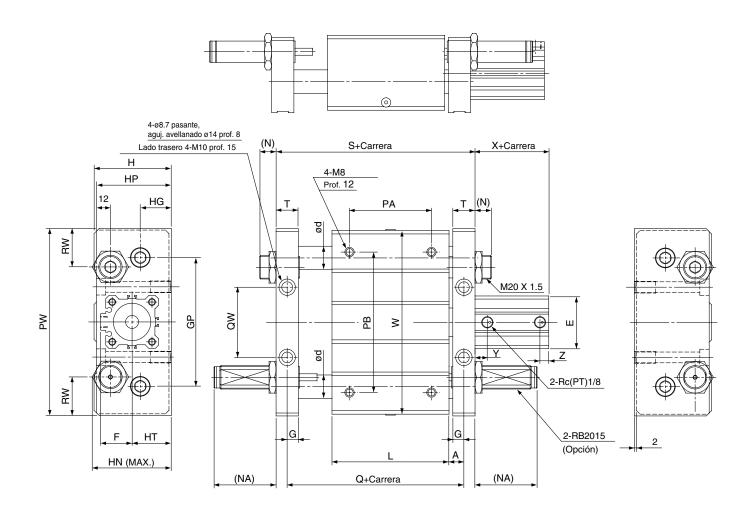
Nota 1) Algunas juntas están duplicadas para la culata posterior,

en los juegos de juntas de las versiones de carrera larga.

Dimensiones Ø12 to Ø25


Forma del cilindro

ø12



																					(mm)
Diámetro (mm)	Carrera estándar (mm)	Α	В	С	Bronce	d Lineal	a holas	Е	G	GP	н	на	HG	HN	НР	нт	,	ı	JK	L	LD
12	15, 25	8.5	8	4	16	1		25	7.5	50	34	6	14.5	34	33	18	M	5	9.5	68	4.3
16	15, 25	7.5	9.5	5	18	1	2	29	6.5	65	40	6.5	16	39.5	39	21	M	6	9.5	75	5.2
20	25, 50	9.5	11	6.5	25	1	6	36	8.5	80	46	9	18	44.1	45	24	М	8	10	86	6.9
25	25, 50	9.5	11	6.5	25	1	6	40	8.5	90	54	9	23	55	53	28	М	8	10	86	6.9
Diámetro (mm)	ММ	М	(N)	(NA)	N	N	PA*	РВ	PW	Q	QW	R	В	RW	s	Т	U	w	Х	Υ	Z
12	M4	6	8	27	M		30	60	80	85	26	RBC		17.5	96	13	1	77	22	7.5	5
16	M5	8	8	27	М	8	45	70	95	90	40	RBC	806	15	103	13	2	92	22	7.5	5
20	M6	10	10	29	М	10	60	100	120	105	46	RB1	007	26	122	17	2	117	29.5	9	5.5
25	M6	10	12	50	М	14	60	100	130	105	50	RB1	411	22	122	17	2	127	32.5	11	5.5

* La dimensión PA se encuentra en el centro de la dimensión L .

С	arrera la	Arrera larga (mm) ámetro (mm) Rango carrera (mm) X Y Z 12 50, 75, 100 32 7.5 7.5				
[Diámetro (mm)	Rango carrera (mm)	Х	Υ	Z	
	12	50, 75, 100	32	7.5	7.5	
	16	50, 75, 100	32	7.5	7.5	
	20	75, 100, 125, 150, 175, 200	41	9	9	
	25	75 100 125 150 175 200 250 300	44	11	11	

ø32, ø40

																					(mm)
Ī	Diámetro	Carrera estándar	Α		d	Е	F	G	GP	н	НG	HN	НР	нт	_	(N)	(NA)	PA*	РВ	PW	G
	(mm)	(mm)		De bronce	De bolas	_	•	~	<u>.</u>	••	''`		• • • •	•••	_	(,	(,	• • • •			_
	32	25, 50, 75, 100	10.5	28	20	45	27	9.5	110	66	26.5	67.6	64	33.5	100	14	53	70	120	160	121
Ī	40	25, 50, 75, 00	11.5	36	25	52	31	10.5	130	78	30.5	77.6	74	40.5	136	12	51	90	140	190	159

Diámetro (mm)	QW	RW	S	Т	W	Х	Υ	Z
32	60	33	140	19	157	33	10.5	7.5
40	84	35	180	21	187	39.5	11	8

* La dimensión PA está en el centro de la dimensión L.

Carrera larga

Carrera iai	ya			(mm)
Diámetro (mm)	Rango carrera (mm)	Х	Υ	Z
32	125, 150, 175, 200, 250, 300	45.5	12.5	12.5
40	125, 150, 175, 200, 250, 300	55	14	14

Características detectores

Características comunes

Modelo	Detector Reed	Detector estado sólido				
Corriente de fuga	Ninguno	3 cables: 100 mA o menos 2 cables: 1mA o menos				
Tiempo de respuesta	1.2ms	1 ms o menos ⁽²⁾				
Resistencia impactos	300m/s ²	1000m/s ²				
Resistencia aislamiento	50M o más a 500V DC ((Entre carcasa y línea)					
Resistencia voltaje	1 minuto a 1500V AC ⁽¹⁾ (Entre carcasa y línea)	1 minuto a 1000V AC (Entre carcasa y línea)				
Temperatura ambiente		–10 a 60 C				
Carcasa de protección IP67 de acuerdo con IEC529 estándar, C 0920 construcción a prueba de osmosis de acuercon con JIS estándaro						

Nota 1) Entrada para el modelo con conector y el modelo D-A9□(V): 1 minuto a 1000V AC (Entre carcasa y línea)

Nota 2) Excepto para detectores de estado sólido con un temporizador (D-F7NT)

Características técnicas de cableado

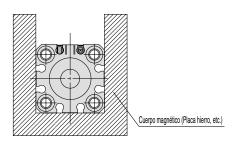
Modelo d	e detector	Especifiaciones cableado				
Detector Reed Detector estado sólido		Loposinasionos sabioado				
D-A90(V) D-A93(V)	D-M9B(V) D-M9BW(V) D-M9BAL	Cable vilino oleoresistente ø2.7 0.18mm² X 2 cables (marrón, azul)				
D-A96(V)	D-M9N(V) D-M9P(V) D-M9NW(V) D-M9PW(V)	Cable vilino oleoresistente ø2.7 0.15mm² X 3 cables (marrón, negro, azul)				
D-A72(H) D-A73(H)(C) D-A76H D-A80(H)(C) D-A79W	D-J79(C)(W) D-F7BV D-F7BWV D-F7BAL	Cable vilino oleoresistente ø3.4 0.2mm² X 2 cables (marrón, azul)				
	D-F79(W) D-F7P(V)(W) D-F7NV D-F7NWV D-F7NTL	Cable vilino oleoresistente ø3.4 0.2mm ² X 3 cables (marrón, azul, negro)				
	D-F7LF D-F79F	Cable vilino oleoresistente ø3.4 0. 2mm² X 4 cables (marrón , negro, azul, naranja)				

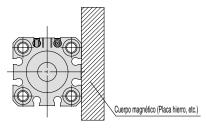
Carreras mínimas para el montaje de los detectores magnéticos

(mm) Modelo de D-M9B Modelo detección D-M9P D-M9□V D-M9BAL D-A9□ D-A9□V D-M9N D-M9□WV aplicable Número de detectores D-M9□W CXT□12 10 10 15 20 5 10 25 2 pcs. to CXT□25 1 pc. 10 5 15 20 5 10 25 10 10 5 15 10 15 20 2 pcs. CXT□ 32 40 10 5 10 15 5 10 1 pc. 20

(mm)

Modelo aplicable	Modelo detector			D-F7□WV	D-A7□H D-A80H D-F7□ D-J79	D-A79W	D-F7□W D-J79W D-M9BAL D-F7NT D-F79F	D-F7LF
32	2 uns.	5	10	15	15	20	20	25
$CXT \square \frac{32}{40}$	1 un.	5	5	10	15	15	20	25





Precauciones de uso de los detectores magnéticos

Instalación

- ① Cuando use este producto, no deposite ningún objeto sobre él, o le haga muescas, asi como tampoco aplique una carga excesiva.
- ② No trabaje con este cilindro en una zona en la exista un campo magnético grande.
- ③ Si se trabaja con el cilindro en una zona en la que existan objetos magnéticos en las proximidades de los cilindros, el funcionamiento del detector magnético podría ser inestable. Si éste fuese el caso, contacte con SMC.

- ④Evite tirones y tensiones a los cables y a los tubos.
- ⑤ Para trabajar con este producto en zonas donde existe en la atmósfera una gran cantidad de agua, aceites,fluidos para limpieza, contacte con SMC.
- ⑥ Cuando se apriete el tornillo de fijación del detector magnético, para el modelo D-A9□(V) o D-M9□□(V), use un destornillador de relojero con diámetro de empuñadura de 5 a 6mm. El par de apriete es aproximadamente de 0.1 a 0.2Nm.
- ⑦Puede que no sea posible montar detectores modelos D-A9□(V) o D-M9□□(V) en los cilindros de diámetro ø20 y ø25, debido a sus carreras o al tamaño de los racores de conexión. Si este es el caso, contacte con SMC.
- ® Para mayor información de los detectores magnéticos, véanse las páginas sobre los detectores magnéticos en SMC Best Pneumatics

Velocidad del cilindro

En una aplicación en la que un detector magnético esté emplazado en la mitad de una carrera para dar señal al pasar el émbolo, tenga en cuenta que si el émbolo va demasiado deprisa, incluso aunque se active el detector magnético, el periodo de tiempo en el que el detector estará activado será muy corto y puede no ser capaz de activar la carga apropiadamente.

Detectores Reed Capacidad de contacto

Nunca trabaje con una carga que exceda la capacidad de contacto máxima del detector magnético. Para trabajar con un relé como una carga, use el relé mostrado en la tabla inferior o el equivalente, para alargar la vida del detector magnético.

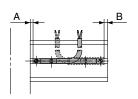
Fuji Electric	MRON	Matsushita
HH5	MY	HC
Tokyo Electric	Izumi Electric	Mitsubishi Electric

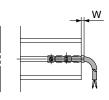
Cableado: intensidad y voltaje

- Asegúrese de conectar la carga antes de conectar el detector magnético al suministro de corriente.
- ② Si los detectores con indicador óptico como es el caso de D-A93(V) or D-A73(H, C) se usan bajo un carga DC, deben observarse sus polaridades. El cable marrón es el positivo (+) y el azul es el negativo (-). Los detectores magnéticos se pondrán en funcionamiento incluso si los cables están invertidos pero su LED no se iluminará. Tenga en cuenta que si se le carga con una intensidad mayor que la intensidad nominal, se dañará el LED y no funcionará.
- ③ Uso de los detectores magnéticos con un indicador óptico (excepto DA96, A96V, y A76H)
- Si se trabaja con el detector por debajo de la intensidad nominal, no habrá problema en el funcionamiento del detector, incluso si su LED fuese tenue no iluminaría absolutamente nada.
- Si los detectores magnéticos están conectados en serie como se muestra en la figura inferior, tenga en cuenta que la caída de voltaje interna del LED será significativa (hasta 2.4V o 2.6V por detector magnético).

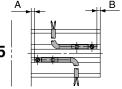
- Si se trabaja con el detector bajo la intensidad nominal, incluso si el funcionamiento del detector es normal, la carga no funcionaría debido a un problema de caída de voltaje interno del detector. Por este motivo, asegúrese de comprobar el rango de voltaje admisible de carga antes de trabajar con el detector.
- 4 Si la caída de voltaje interna de un LED trae problemas, use el detector sin indicador óptico.

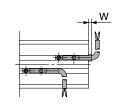
Detectores de estado sólido

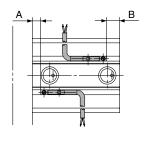

- ①Nunca trabaje con una carga que exceda la capacidad de contacto máxima del detector magnético.
- ②Asegúrese de aplicar la carga antes de conectar el detector al suministro de corriente.
- ③Asegúrese de realizar las operaciones de cableado correctamente porque podría llevar a daños.
- ④Un detector magnético con 2 hilos tienen una caída de voltaje interno de 5V o menos y la intensidad de fuga es de 1mA o menos. Por este motivo, se cumplen las características técnicas de entrada de la mayoría de los PLCs. Sin embargo, si hubiese algún problema, use un modelo con 3 cables DC.

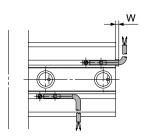


Posiciones y distancias de montaje de los detectores magnéticos


Detector Reed D-A90 D-M9N D-M9NW D-M9P D-M9PW D-M9BW D-M9BAL


ø12




ø16, 20, 25

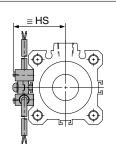
ø32, 40

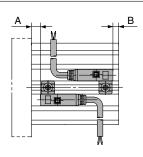
(mm)

Modelo dete	ctor		D-A90 D-A93 D-A96		D-M9 D-M9 D-M9		19NW 19PW 19BW	D-M9BAL			
Símbolo		Α	В	W	A B W		W	Α	В	W	
Carrera está	indar										
	12	1.5	0	1.5(4)	5.5	4.5	5.5	4.5	3.5	14.5	
	16	2	0	2(4.5)	6	4	6	5	3	15	
Diámetro	20	6	3.5	-1.5(1)	10	7.5	2.5	9	6.5	11.5	
(mm)	25	7	5.5	-3.5(-1)	11	9.5	0.5	10	8.5	9.5	
	32	8	5	-3(-0.5)	12	9	1	11	8	10	
	40	12	7.5	-5.5(-3)	16	11.5	-1.5	15	10.5	7.5	
Carrera larg	ga										
	12	5	7	-5(-2.5)	9	11	-1	8	10	8	
	16	5.5	6	-4.5(-2)	9.5	10.5	-0.5	8.5	9.5	8.5	
Diámetro	20	9	11.5	-10(-7.5)	13	16	-6	12	15	3.5	
(mm)	25	10	13.5	-12(-9.5)	14	18	-8	13	17	1	
	32	8.5	16.5	-14.5(-12)	12.5	20.5	-10.5	11.5	19.5	-1.5	
	40	12	22.5	-20.5(-18)	16	26.5	-16.5	15	25.5	-7.5	

 Detector Reed
 Detector estado sólido

 D-A72H
 D-F79
 D-J79W

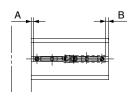

 D-A73H
 D-F7P
 D-F7BAL


 D-A76H
 D-J79
 D-F79F

 D-A80H
 D-F79W
 D-F7LF

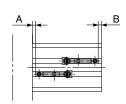
 D-F7PW
 D-F7NTL

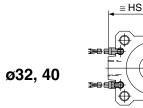
ø32, 40

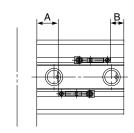


(mm)

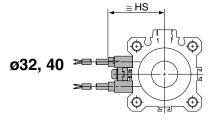
Modelo det	ector	D-A7 D-A7 D-A7		A80H		D-F79 D-F7F D-J79	•	D-F7	9W D-1 PW D- 9W D-	F79F	ı	D-F7N1	ΓL
Símbolo)	Α	В	Hs	Α	В	Hs	Α	В	Hs	Α	В	Hs
Carrera estándar													
Diámetro	32	9.5	6.5	32.5	9.5	6.5	32.5	13.5	10.5	32.5	14.5	10.5	32.5
(mm)	40	13.5	9	36	13.5	9	36	17.5	13	36	18.5		36
Carrera lar	ga												
Diámetro	32	10	18	32.5	10	18	32.5	14	22	32.5	15	23	32.5
(mm)	40	13.5	24	36	13.5	24	36	17.5	28	36	18.5	29	36

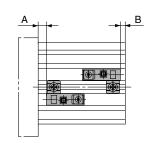

Mesa guiada serie pesada *Serie CXT*


Detector Reed D-A90V D-A93V D-A96V Detector estado sólido D-M9NV D-M9NWV D-M9PV D-M9PWV D-M9BV D-M9BWV #HS



ø12





(mm)

Modelo dete	cetor		D-A90\ D-A93\ D-A96\	1	D-M9NV, M9NWV D-M9PU, M9PWV D-M9BV, M9BWV				
Símbolo)	Α	В	Hs	Α	В	Hs		
Carrera est	ándar								
	12	1.5	0	17	5.5	4.5	19		
	16	2	0	19	6	4	21		
Diámetro (mm)	20	6	3.5	22.5	10	7.5	24		
	25	7	5.5	24.5	11	9.5	26		
	32	8	5	27	12	9	29		
	40	12	7.5	30.5	16	11.5	32.5		
Carrera lar	ga								
	12	5	7	17	9	11	19		
	16	5.5	6	19	9.5	10.5	21		
Diámetro	20	9	11.5	22.5	13	16	24		
(mm)	25	10	13.5	24.5	14	18	26		
	32	8.5	16.5	27	12.5	20.5	29		
	40	12	22.5	30.5	16	26.5	32.5		

Detector Reed D-A72 D-A73 D-A80 D-A73C D-A80C D-A79W Detector estado sólido D-F7NV D-F7NWV D-F7PV D-F7BWV D-F7BV D-J79C

(mm)

Modelo dete	ector		D-A72 D-A73 D-A80			D-A730 D-A800		ı	D-A79\	v		D-F7N D-F7P D-F7B	V	ı	D-J790	;	_	D-F7NWV D-F7BWV	
Símbolo	Símbolo		В	Hs	Α	В	Hs	Α	В	Hs	Α	В	Hs	Α	В	Hs	Α	В	Hs
Carrera est	ándar																		
Diámetro	32	9	6	31.5	9.5	6.5	38.5	6.5	3.5	34	9.5	6.5	35	9.5	6.5	38	10	7	38.5
(mm)	40	13	8.5	35	13.5	9	42	10.5	6	37.5	13.5	9	38.5	13.5	9	41.5	14	9.5	42
Carrera lar	Carrera larga																		
Diámetro	32	9.5	17.5	31.5	10	18	38.5	7	15	34	10	18	35	10	18	38	10.5	18.5	38.5
(mm)	40	13	23.5	35	13.5	24	42	10.5	21	37.5	13.5	24	38.5	13.5	24	41.5	14	24.5	42